The novel endosomal membrane protein Ema interacts with the class C Vps–HOPS complex to promote endosomal maturation
نویسندگان
چکیده
Endosomal maturation is critical for accurate and efficient cargo transport through endosomal compartments. Here we identify a mutation of the novel Drosophila gene, ema (endosomal maturation defective) in a screen for abnormal synaptic overgrowth and defective protein trafficking. Ema is an endosomal membrane protein required for trafficking of fluid-phase and receptor-mediated endocytic cargos. In the ema mutant, enlarged endosomal compartments accumulate as endosomal maturation fails, with early and late endosomes unable to progress into mature degradative late endosomes and lysosomes. Defective endosomal down-regulation of BMP signaling is responsible for the abnormal synaptic overgrowth. Ema binds to and genetically interacts with Vps16A, a component of the class C Vps-HOPS complex that promotes endosomal maturation. The human orthologue of ema, Clec16A, is a candidate susceptibility locus for autoimmune disorders, and its expression rescues the Drosophila mutant demonstrating conserved function. Characterizing this novel gene family identifies a new component of the endosomal pathway and provides insights into class C Vps-HOPS complex function.
منابع مشابه
Clathrin-dependent mechanisms modulate the subcellular distribution of class C Vps/HOPS tether subunits in polarized and nonpolarized cells
Coats define the composition of carriers budding from organelles. In addition, coats interact with membrane tethers required for vesicular fusion. The yeast AP-3 (Adaptor Protein Complex 3) coat and the class C Vps/HOPS (HOmotypic fusion and Protein Sorting) tether follow this model as their interaction occurs at the carrier fusion step. Here we show that mammalian Vps class C/HOPS subunits and...
متن کاملCorrigendum: RILP interacts with HOPS complex via VPS41 subunit to regulate endocytic trafficking
The HOPS complex serves as a tethering complex with GEF activity for Ypt7p in yeast to regulate late endosomal membrane maturation. While the role of HOPS complex is well established in yeast cells, its functional and mechanistic aspects in mammalian cells are less well defined. In this study, we report that RILP, a downstream effector of Rab7, interacts with HOPS complex and recruits HOPS subu...
متن کاملBro1 is an endosome-associated protein that functions in the MVB pathway in Saccharomyces cerevisiae.
Multivesicular bodies are late endosomal compartments containing lumenal vesicles that are formed by inward budding of the limiting endosomal membrane. In the yeast Saccharomyces cerevisiae, integral membrane proteins are sorted into the lumenal vesicles of multivesicular bodies, and this process requires the class E subset of VPS genes. We show that one of the class E VPS genes, BRO1/VPS31, en...
متن کاملSubunit organization and Rab interactions of Vps-C protein complexes that control endolysosomal membrane traffic
Traffic through late endolysosomal compartments is regulated by sequential signaling of small G proteins of the Rab5 and Rab7 families. The Saccharomyces cerevisiae Vps-C protein complexes CORVET (class C core vacuole/endosome tethering complex) and HOPS (homotypic fusion and protein transport) interact with endolysosomal Rabs to coordinate their signaling activities. To better understand these...
متن کاملThe Mon1-Ccz1 Complex Is the GEF of the Late Endosomal Rab7 Homolog Ypt7
Rab GTPases coordinate membrane fusion reactions [1]. Rab-GDP requires a guanine nucleotide exchange factor (GEF) for its conversion to the active GTP form. It then binds to effectors such as multimeric tethering complexes and supports fusion [2]. GTPase-activating proteins (GAPs) promote GTP hydrolysis to inactivate the Rab. GEFs are thus critical activators of fusion reactions [3, 4]. The Rab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 188 شماره
صفحات -
تاریخ انتشار 2010